Privacy-preserving Data Splitting: A Combinatorial Approach
نویسندگان
چکیده
Privacy-preserving data splitting is a technique that aims to protect data privacy by storing different fragments of data in different locations. In this work we give a new combinatorial formulation to the data splitting problem. We see the data splitting problem as a purely combinatorial problem, in which we have to split data attributes into different fragments in a way that satisfies certain combinatorial properties derived from processing and privacy constraints. Using this formulation, we develop new combinatorial and algebraic techniques to obtain solutions to the data splitting problem. We present an algebraic method which builds an optimal data splitting solution by using Gröbner bases. Since this method is not efficient in general, we also develop a greedy algorithm for finding solutions that are not necessarily minimal sized.
منابع مشابه
A centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کاملNew Algorithms for Preserving Differential Privacy
In this thesis, we consider the problem of how one should perform computations on private data. We specifically consider algorithms which preserve the recent formalization of privacy known as differential privacy. The fundamental tradeoff that we consider is that of privacy and utility. For which tasks can we perform useful computations while still preserving privacy, and what exactly is the tr...
متن کاملارایه یک روش جدید انتشار دادهها با حفظ محرمانگی با هدف بهبود دقّت طبقهبندی روی دادههای گمنام
Data collection and storage has been facilitated by the growth in electronic services, and has led to recording vast amounts of personal information in public and private organizations databases. These records often include sensitive personal information (such as income and diseases) and must be covered from others access. But in some cases, mining the data and extraction of knowledge from thes...
متن کاملPrivacy-preserving Classification of Data Streams
Data mining is the information technology that extracts valuable knowledge from large amounts of data. Due to the emergence of data streams as a new type of data, data streams mining has recently become a very important and popular research issue. There have been many studies proposing efficient mining algorithms for data streams. On the other hand, data mining can cause a great threat to data ...
متن کاملDifferentially Private Local Electricity Markets
Privacy-preserving electricity markets have a key role in steering customers towards participation in local electricity markets by guarantying to protect their sensitive information. Moreover, these markets make it possible to statically release and share the market outputs for social good. This paper aims to design a market for local energy communities by implementing Differential Privacy (DP)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.05974 شماره
صفحات -
تاریخ انتشار 2018